Discovering Sequential Patterns in Event-Based Spatio-Temporal Data by Means of Microclustering - Extended Report

نویسنده

  • Piotr S. Maciag
چکیده

In the paper, we consider the problem of discovering sequential patterns from event-based spatio-temporal data. The problem is defined as follows: for a set of event types F and for a dataset of events instances D (where each instance in D denotes an occurrence of a particular event type in considered spatio-temporal space), discover all sequential patterns defining the following relation between any event types participating in a particular pattern. The following relation → between any two event types, denotes the fact that instances of the first event type attract in their spatial proximity and in considered temporal window afterwards occurrences of instances of the second event type. In the article, the notion of sequential pattern in event-based spatio-temporal data has been defined and the already proposed approach to discovering sequential pattern has been reformulated. We show, it is possible to efficiently and effectively discover sequential patterns in event-based spatio-temporal data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Discovering of Top-K Sequential Patterns in Event-Based Spatio-Temporal Data

We consider the problem of discovering sequential patterns from event-based spatio-temporal data. The dataset is described by a set of event types and their instances. Based on the given dataset, the task is to discover all significant sequential patterns denoting some attraction relation between event types occurring in a pattern. Already proposed algorithms discover all significant sequential...

متن کامل

Mining Frequent Patterns from Spatio- Temporal Data Sets: a Survey

Space and time are implicit in every activity of life. Every real-world object has its past, present, future and hence is intrinsically tied up with location and time. Storing spatio-temporal attributes in the databases along with the thematic attributes enriches the data and the inherent knowledge stored in the database. Spatio-temporal databases provide description of real-world phenomenon in...

متن کامل

Discovering Patterns in Multiple Time-series

In the past there has been some methodologies for solving time-series data mining. Those previous works of multiple sequences matching mechanisms are complicated and lack of comprehensive application domains, especially in multiple streaming data. Here we deal with these restrictions by introducing a novel methodology for finding multiple time-series patterns. The model is evaluated the noise b...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Distributed Mining of Spatio-temporal Event Patterns in Sensor Networks

Many sensor network applications are concerned with discovering interesting patterns among observed real-world events. Often, only limited apriori knowledge exists about the patterns to be found eventually. Here, raw streams of sensor readings are collected at the sink for later offline analysis – resulting in a large communication overhead. In this position paper, we explore the use of in-netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.08674  شماره 

صفحات  -

تاریخ انتشار 2017